## Agilent 34970A

## Data Acquisition/Switch Unit



# Agilent performance <br> at a fraction of the cost <br> of other standalone data acquisition systems 



## Customize your Agilent 34970A with-plug-in modules

A complete selection of plug-in modules gives you high-quality measurement, switching, and control capabilities to choose from. Modules include both low-frequency and RF multiplexers, a matrix switch, a general-purpose switch, and a multifunction module that includes digital input/output, analog output, and totalizer capabilities. You can mix and match modules to get just the functionality you need right now-then change or add more channels later as your application grows.

Modules for the 34970A are designed to make your testing easier, faster, and more reliable. Here's how:

## Higher throughput

Our unique architecture incorporates a highperformance microprocessor on each module, offloading the mainframe processor and minimizing backplane communications for faster throughput.

## More channels in less space

Surface mount construction and a highly integrated design minimize the space required for relay drive and interface circuitry. High density onmodule connectors save both board and con-nector space normally required by a terminal block. We use the latest technology to squeeze the most out of the remaining board space, giving you up to 40 single-ended channels in roughly the same space used by many data acquisition system terminal blocks.

## Convenient connections

On-module screw-terminal connectors make wiring more convenient. Built-in strain-relief cable routing and cable tie points keep your wiring secure and safe from accidental tugs and pulls. An internal analog bus routes signals from any of the low-frequency multiplexers directly to the internal DMM, without the need for external connections.

Use the chart below to help you pinpoint the modules that meet your needs.

## Agilent Modules-at-a-Glance Selection Guide

| Model Description | Type | Speed (ch/sec) | Max <br> Volts | Max <br> Amps | Bandwidth | Thermal Offset | Comments | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 34901 \text { A } \\ & 20 \text { ch Multiplexer } \end{aligned}$ | 2-wire armature <br> (4-wire selectable) | 60 | 300 V | 1A | 10 MHz | $<3 \mu \mathrm{~V}$ | Built-in cold junction reference 2 additional current channels (22 total) | 18 |
| 34902A <br> 16 ch Multiplexer | 2-wire reed <br> (4-wire selectable) | 250 | 300 V | 50 mA | 10 MHz | $<6 \mu \mathrm{~V}$ | Built-in cold junction reference | 19 |
| 34903A <br> 20 ch Actuator/GP Switch | SPDT/form C | 120 | 300 V | 1A | 10 MHz | $<3 \mu \mathrm{~V}$ |  | 20 |
| $\begin{aligned} & \text { 34904A } \\ & 4 \times 8 \text { Matrix } \end{aligned}$ | 2-wire armature | 120 | 300 V | 1A | 10 MHz | $<3 \mu \mathrm{~V}$ |  | 20 |
| 34905A <br> Dual 4 ch RF Mux $50 \Omega$ | Common Low (unterminated) | 60 | 42 V | 0.7 A | 2 GHz | $<6 \mu \mathrm{~V}$ | 1 GHz bandwidth through BNC-to-SMB adapter cable | 21 |
| 34906A <br> Dual 4 ch RF Mux 75 $\Omega$ | Common Low (unterminated) | 60 | 42 V | 0.7 A | 2 GHz | $<6 \mu \mathrm{~V}$ | 1 GHz bandwidth through BNC-to-SMB adapter cable | 21 |
| 34907A <br> Multifunction Module | Two 8-bit digital I/O ports 26-bit Event Counter Two 16-bit Analog outputs |  | $\begin{aligned} & 42 \mathrm{~V} \\ & 42 \mathrm{~V} \\ & \pm 12 \mathrm{~V} \end{aligned}$ | 400 mA <br> 10 mA | $\begin{aligned} & 100 \mathrm{KHz} \\ & \mathrm{dc} \end{aligned}$ |  | Open drain <br> Selectable input threshold <br> Max 40 mA total output per frame | 22 |
| 34908A <br> 40 ch Single-Ended Mux | 1-wire armature (common low) | 60 | 300 V | 1A | 10 MHz | $<3 \mu \mathrm{~V}$ | Built-in cold junction reference No four-wire measurements | 19 |

Accuracy Specifications $\pm(\% \text { of reading }+\% \text { of range) })^{[1]}$
Includes measurement error, switching error, and transducer conversion error

|  | Range ${ }^{[3]}$ | Frequency, etc. | $\begin{aligned} & 24 \text { Hour }{ }^{2]} \\ & 23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 90 \text { Day } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \text { Year } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$ | Temperature <br> Coefficient <br> $0^{\circ} \mathrm{C}-18^{\circ} \mathrm{C}, 28^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC Voltage |  |  |  |  |  |  |
|  | 100.0000 mV |  | $0.0030+0.0035$ | $0.0040+0.0040$ | $0.0050+0.0040$ | $0.0005+0.0005$ |
|  | 1.000000 V |  | $0.0020+0.0006$ | $0.0030+0.0007$ | $0.0040+0.0007$ | $0.0005+0.0001$ |
|  | 10.00000 V |  | $0.0015+0.0004$ | $0.0020+0.0005$ | $0.0035+0.0005$ | $0.0005+0.0001$ |
|  | 100.0000 V |  | $0.0020+0.0006$ | $0.0035+0.0006$ | $0.0045+0.0006$ | $0.0005+0.0001$ |
|  | 300.000 V |  | $0.0020+0.0020$ | $0.0035+0.0030$ | $0.0045+0.0030$ | $0.0005+0.0003$ |
| True RMS AC Voltage ${ }^{[4]}$ |  |  |  |  |  |  |
|  | 100.0000 mV | $3 \mathrm{~Hz}-5 \mathrm{~Hz}$ | $1.00+0.03$ | $1.00+0.04$ | $1.00+0.04$ | $0.100+0.004$ |
|  | to 100.0000 V | $5 \mathrm{~Hz}-10 \mathrm{~Hz}$ | $0.35+0.03$ | $0.35+0.04$ | $0.35+0.04$ | $0.035+0.004$ |
|  |  | $10 \mathrm{~Hz}-20 \mathrm{kHz}$ | $0.04+0.03$ | $0.05+0.04$ | $0.06+0.04$ | $0.005+0.004$ |
|  |  | $20 \mathrm{kHz}-50 \mathrm{kHz}$ | $0.10+0.05$ | $0.11+0.05$ | $0.12+0.05$ | $0.011+0.005$ |
|  |  | $50 \mathrm{kHz}-100 \mathrm{kHz}$ | $0.55+0.08$ | $0.60+0.08$ | $0.60+0.08$ | $0.060+0.008$ |
|  |  | $100 \mathrm{kHz}-300 \mathrm{kHz}{ }^{[5]}$ | $4.00+0.50$ | $4.00+0.50$ | $4.00+0.50$ | $0.20+0.02$ |
|  | 300.0000 V | $3 \mathrm{~Hz}-5 \mathrm{~Hz}$ | $1.00+0.05$ | $1.00+0.08$ | $1.00+0.08$ | $0.100+0.008$ |
|  |  | $5 \mathrm{~Hz}-10 \mathrm{~Hz}$ | $0.35+0.05$ | $0.35+0.08$ | $0.35+0.08$ | $0.035+0.008$ |
|  |  | $10 \mathrm{~Hz}-20 \mathrm{kHz}$ | $0.04+0.05$ | $0.05+0.08$ | $0.06+0.08$ | $0.005+0.008$ |
|  |  | $20 \mathrm{kHz}-50 \mathrm{kHz}$ | $0.10+0.10$ | $0.11+0.12$ | $0.12+0.12$ | $0.011+0.012$ |
|  |  | $50 \mathrm{kHz}-100 \mathrm{kHz}$ | $0.55+0.20$ | $0.60+0.20$ | $0.60+0.20$ | $0.060+0.020$ |
|  |  | $100 \mathrm{kHz}-300 \mathrm{kHz}{ }^{[5]}$ | $4.00+1.25$ | $4.00+1.25$ | $4.00+1.25$ | $0.20+0.05$ |
| Resistance ${ }^{[6]}$ |  |  |  |  |  |  |
|  | 100.0000 | 1 mA current source | $0.0030+0.0035$ | $0.008+0.004$ | $0.010+0.004$ | $0.0006+0.0005$ |
|  | 1.000000 k | 1 mA | $0.0020+0.0006$ | $0.008+0.001$ | $0.010+0.001$ | $0.0006+0.0001$ |
|  | 10.00000 k | $100 \mu \mathrm{~A}$ | $0.0020+0.0005$ | $0.008+0.001$ | $0.010+0.001$ | $\mathbf{0 . 0 0 0 6 + 0 . 0 0 0 1 ~}$ |
|  | 100.0000 k | $10 \mu \mathrm{~A}$ | $0.0020+0.0005$ | $0.008+0.001$ | $0.010+0.001$ | $0.0006+0.0001$ |
|  | 1.000000 M | $5.0 \mu \mathrm{~A}$ | $0.002+0.001$ | $0.008+0.001$ | $0.010+0.001$ | $0.0010+0.0002$ |
|  | 10.00000 M | 500 nA | $0.015+0.001$ | $0.020+0.001$ | $0.040+0.001$ | $0.0030+0.0004$ |
|  | 100.0000 M | $500 \mathrm{nA} / 10 \mathrm{M}$ | $0.300+0.010$ | $0.800+0.010$ | $0.800+0.010$ | $0.1500+0.0002$ |
| Frequency and Period ${ }^{[7]}$ |  |  |  |  |  |  |
|  | 100 mV | $3 \mathrm{~Hz}-5 \mathrm{~Hz}$ | 0.10 | 0.10 | 0.10 | 0.005 |
|  | to 300 V | $5 \mathrm{~Hz}-10 \mathrm{~Hz}$ | 0.05 | 0.05 | 0.05 | 0.005 |
|  |  | $10 \mathrm{~Hz}-40 \mathrm{~Hz}$ | 0.03 | 0.03 | 0.03 | 0.001 |
|  |  | $40 \mathrm{~Hz}-300 \mathrm{kHz}$ | 0.006 | 0.01 | 0.01 | 0.001 |
| DC Current (34901A only) |  |  |  |  |  |  |
|  | 10.00000 mA | <0.1 V burden | $0.005+0.010$ | $0.030+0.020$ | $0.050+0.020$ | 0.002+ 0.0020 |
|  | 100.0000 mA | <0.6 V | $0.010+0.004$ | $0.030+0.005$ | $0.050+0.005$ | $0.002+0.0005$ |
|  | 1.000000 A | <2 V | $0.050+0.006$ | $0.080+0.010$ | $0.100+0.010$ | $0.005+0.0010$ |
| True RMS AC Current (34901A only) |  |  |  |  |  |  |
|  | 10.00000 mA | $3 \mathrm{Hz-5} \mathrm{~Hz}$ | $1.00+0.04$ | $1.00+0.04$ | $1.00+0.04$ | $0.100+0.006$ |
|  | and ${ }^{[4]} 1.000000 \mathrm{~A}$ | $5 \mathrm{~Hz}-10 \mathrm{~Hz}$ | $0.30+0.04$ | $0.30+0.04$ | $0.30+0.04$ | $0.035+0.006$ |
|  |  | $10 \mathrm{~Hz}-5 \mathrm{kHz}$ | $0.10+0.04$ | $0.10+0.04$ | $0.10+0.04$ | 0.015 + 0.006 |
|  | $100.0000 \mathrm{~mA}^{[8]}$ | $3 \mathrm{~Hz}-5 \mathrm{~Hz}$ | $1.00+0.5$ | $1.00+0.5$ | $1.00+0.5$ | $0.100+0.06$ |
|  |  | $5 \mathrm{~Hz}-10 \mathrm{~Hz}$ | $0.30+0.5$ | $0.30+0.5$ | $0.30+0.5$ | $0.035+0.06$ |
|  |  | $10 \mathrm{~Hz}-5 \mathrm{kHz}$ | $0.10+0.5$ | $0.10+0.5$ | $0.10+0.5$ | $0.015+0.06$ |
| Temperature | Type | 1-Year Accuracy ${ }^{[9]}$ |  | Extended Range | ear Accuracy ${ }^{[9]}$ |  |
| Thermocouple ${ }^{[10]}$ | B | $1100^{\circ} \mathrm{C}$ to $1820^{\circ} \mathrm{C}$ | $1.2^{\circ} \mathrm{C}$ | $400^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$ | $1.8{ }^{\circ} \mathrm{C}$ |  |
|  | E | $-150^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$ | $1.0^{\circ} \mathrm{C}$ | $-200^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$ | $1.5{ }^{\circ} \mathrm{C}$ |  |
|  | J | $-150^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ | $1.0^{\circ} \mathrm{C}$ | $-210^{\circ} \mathrm{C}$ to -150 ${ }^{\circ} \mathrm{C}$ | $1.2{ }^{\circ} \mathrm{C}$ |  |
|  | K | $-100^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ | $1.0^{\circ} \mathrm{C}$ | $-200^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$ | $1.5{ }^{\circ} \mathrm{C}$ | $0.03{ }^{\circ} \mathrm{C}$ |
|  | N | $-100^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$ | $1.0^{\circ} \mathrm{C}$ | $-200^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$ | $1.5{ }^{\circ} \mathrm{C}$ |  |
|  | R | $300^{\circ} \mathrm{C}$ to $1760^{\circ} \mathrm{C}$ | $1.2{ }^{\circ} \mathrm{C}$ | $-50^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$ | $1.8{ }^{\circ} \mathrm{C}$ |  |
|  | S | $400^{\circ} \mathrm{C}$ to $1760^{\circ} \mathrm{C}$ | $1.2{ }^{\circ} \mathrm{C}$ | $-50^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$ | $1.8{ }^{\circ} \mathrm{C}$ |  |
|  | T | $-100^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$ | $1.0^{\circ} \mathrm{C}$ | $-200^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$ | $1.5{ }^{\circ} \mathrm{C}$ |  |
| RTD | $\mathrm{R}_{0}$ from $49 \Omega$ to $2.1 \mathrm{k} \Omega$ | $-200^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$ | $0.06{ }^{\circ} \mathrm{C}$ |  |  | $0.003{ }^{\circ} \mathrm{C}$ |
| Thermistor | 2.2 k, 5k, 10k | $-80^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ | $0.08^{\circ} \mathrm{C}$ |  |  | $0.002{ }^{\circ} \mathrm{C}$ |
| [1] Specifications are for 1 hr warm-up and $61 / 2$ digits, Slow ac filter <br> [2] Relative to calibration standards <br> [3] $20 \%$ over range on all ranges except 300 Vdc and ac ranges and 1 Adc and ac current ranges |  |  |  | [5] Typically $30 \%$ of reading error at 1 MHz , limited to $1 \times 10^{8} \mathrm{~V} \mathrm{~Hz}$ |  |  |
|  |  |  |  | [6] Specifications are for 4-wire ohms function or 2 -wire ohms using Scaling |  |  |
|  |  |  |  | emove the-offset. Wit ms function | ut scaling, add $4 \Omega$ a | onal error in 2-wire |
| [4] For sinewave input $<50 \mathrm{kHz}$, add 0.1$14$ | of range. For inputs fro nge additional error | $1 \%$ to $5 \%$ of range and |  | Ohms function <br> [7] Input > 100 mV . For 10 mV to 100 mV inputs multiply \% of reading error $\times 10$ <br> [8] Specified only for inputs $>10 \mathrm{~mA}$ <br> [9] For total measurement accuracy, add temperature probe error <br> [10] Thermocouple specifications not guaranteed when 34907A module is present |  |  |
|  |  |  |  |  |  |  |

Measurement Characteristics ${ }^{[8]}$

| DC Voltage |  |
| :--- | :--- |
| Measurement Method | Continuously Integrating <br> Multi-slope III A-D Converter |
| A-D Linearity | $0.0002 \%$ of reading $+0.0001 \%$ of range |
| Input Resistance |  |
| $100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}$ ranges | Selectable $10 \mathrm{M} \Omega$ or $>10,000 \mathrm{M} \Omega$ |
| $100 \mathrm{~V}, 300 \mathrm{~V}$ ranges | $10 \mathrm{M} \Omega \pm 1 \%$ |
| Input Bias Current | $<30 \mathrm{pA}$ at $25^{\circ} \mathrm{C}$ |
| Input Protection | 300 V all ranges |


| True RMS AC Voltage |  |
| :--- | :--- |
| Measurement Method | AC coupled True RMS — measures the |
|  | AC component of the input with up to |
|  | 300 Vdc of bias on any range |
| Maximum of 5:1 at Full Scale |  |
| Crest Factor |  |
| Additional Crest Factor |  |
| Errors (non-sinewave) | Crest Factor $1-2 \quad 0.05 \%$ of reading |
|  | Crest Factor $2-3 \quad 0.15 \%$ of reading |
|  | Crest Factor $3-4 \quad 0.30 \%$ of reading |
|  | Crest Factor $4-5 \quad 0.40 \%$ of reading |
| Input Impedance | $1 \mathrm{M} \Omega \pm 2 \%$ in parallel with 150 pF |
| Input Protection | 300 Vrms all ranges |


| Resistance |  |
| :---: | :---: |
| Measurement Method | Selectable 4-wire or 2-wire Ohms |
|  | Current source referenced to LO input |
| Offset Compensation | Selectable on $100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$ ranges |
| Maximum Lead Resistance | $10 \%$ of range per lead for $100 \Omega$ and |
|  | $1 \mathrm{k} \Omega$ ranges. $1 \mathrm{k} \Omega$ on all other ranges |
| Input Protection | 300 V on all ranges |
| Frequency and Period |  |
| Measurement Method | Reciprocal counting technique |
| Voltage Ranges | Same as AC Voltage function |
| Gate Time | $1 \mathrm{~s}, 100 \mathrm{~ms}$, or 10 ms |
| Measurement Timeout | Selectable $3 \mathrm{~Hz}, 20 \mathrm{~Hz}, 200 \mathrm{~Hz}$ LF limit |
| DC Current |  |
| Shunt Resistance | $5 \Omega$ for $10 \mathrm{~mA}, 100 \mathrm{~mA} ; 0.1 \Omega$ for 1 A |
| Input Protection | 1 A 250 V fuse on 34901A module |
| True RMS AC Current |  |
| Measurement Method | Direct coupled to the fuse and shunt. |
|  | AC coupled True RMS measurement (measures the ac component only) |
| Shunt Resistance | $5 \Omega$ for $10 \mathrm{~mA} ; 0.1 \Omega$ for $100 \mathrm{~mA}, 1 \mathrm{~A}$ |
| Input Protection | 1 A 250 V fuse on 34901A module |


| Thermocouple <br> Conversion <br> Reference Junction Type <br> Open thermocouple Check | ITS-90 software compensation <br> Internal, Fixed, or External <br> Selectable per channel. Open $>5 \mathrm{k} \Omega$ |
| :--- | :--- |
| Thermistor | $44004,44007,44006$ series |
| RTD | $\alpha=0.00385$ (DIN) and $\alpha=0.00391$ |


| Measurement Noise Rejection 60 (50) Hz ${ }^{[1]}$ |  |
| :---: | :---: |
| dc CMRR | 140 dB |
| ac CMRR | 70 dB |
| Integration Time | Normal Mode Rejection ${ }^{[2]}$ |
| $200 \mathrm{plc} / 3.33 \mathrm{~s}(4 \mathrm{~s})$ | 110 dB [3] |
| $100 \mathrm{plc} / 1.67 \mathrm{~s}(2 \mathrm{~s})$ | 105 dB [3] |
| $20 \mathrm{plc} / 333 \mathrm{~ms}$ (400 ms) | 100 dB [3] |
| $10 \mathrm{plc} / 167 \mathrm{~ms} \mathrm{(200} \mathrm{ms)}$ | 95 dB [3] |
| $2 \mathrm{plc} / 33.3 \mathrm{~ms}$ ( 40 ms ) | 90 dB |
| $1 \mathrm{plc} / 16.7 \mathrm{~ms} \mathrm{(20} \mathrm{ms)}$ | 60 dB |
| $<1$ plc | 0 dB |

## Operating Characteristics ${ }^{[4]}$

Single Channel Measurement Rates ${ }^{[5]}$

| Function | Resolution ${ }^{\text {9] }}$ | reading/s |
| :---: | :---: | :---: |
| dcV, 2-wire Resistance | $61 / 2$ digits ( 10 plc ) | 6 (5) |
|  | $51 / 2$ digits ( 1 plc ) | 57 (47) |
|  | $41 / 2$ digits ( 0.02 plc ) | 490 |
| Thermocouple | $0.1^{\circ} \mathrm{C}$ (1 plc) | 49 (47) |
|  | (0.02 plc) | 280 |
| RTD, Thermistor | $0.01^{\circ} \mathrm{C}(10 \mathrm{plc})$ | 6 (5) |
|  | $0.1^{\circ} \mathrm{C}$ (1 plc) | 47 (47) |
|  | $1^{\circ} \mathrm{C}$ (0.02 plc) | 280 |
| $a c \mathrm{~V}$ | $61 / 2$ Slow ( 3 Hz ) | 0.14 |
|  | $61 / 2 \mathrm{Med}(20 \mathrm{~Hz})$ | 1 |
|  | 6½ Fast (200 Hz) | $8$ |
|  | $61 / 2[6]$ | 100 |
| Frequency, Period | $61 / 2$ digits (1s gate) | 1 |
|  | $51 / 2$ digits ( 100 ms ) | 9 |
|  | $41 / 2$ digits ( 10 ms ) | 70 |


| System Speeds [7] |  |
| :--- | :--- |
| INTO Memory | ch/s |
| single channel dcV | 490 |
| 34902A scanning dcV | 250 |
| 34907A scanning digital in | 250 |
| 34902A scanning dcV with scaling \& 1 alarm fail | 220 |
| 34907A scanning totalize | 170 |
| 34902A scanning temperature | 160 |
| 34902A scanning acV[6] | 100 |
| 34902A scanning dcV/Ohms on alternate channels | 90 |
| 34901A/34908A scanning dcV | 60 |
| INTO and OUT of memory to GPIB or RS-232 (init, fetch) |  |
| 34902A scanning dcV | 180 |
| 34902A scanning dcV with timestamp | 150 |
| OUT of memory to GPIB[10] |  |
| Readings | 800 |
| Readings with timestamp | 450 |
| Readings with all format options ON | 310 |
| 0UT of memory to RS-232 | 600 |
| Readings | 320 |
| Readings with timestamp | 230 |
| Readings with all format options ON |  |
| DIRECT to GPIB or RS-232 | 440 |
| single channel dcV | 200 |
| 34902A scanning dcV | 25 |
| single channel MEAS DCV 10 / MEAS DCV 1 |  |
| single channel MEAS DCV/ MEAS OHMS | 12 |

[1] For $1 \mathrm{~K} \Omega$ unbalance in LO lead
[2] For power line frequency $\pm 0.1 \%$
[3] For power line frequency $\pm 1 \%$ use 80 dB or $\pm 3 \%$ use 60 dB
[4] Reading speeds for 60 Hz and ( 50 Hz ) operation
[5] For fixed function and range, readings to memory, scaling and alarms off, AZERO OFF
[6] Maximum limit with default settling delays defeated
[7] Speeds are for $41 / 2$ digits, delay $\emptyset$, display off, autozero off. Using 115 kbaud RS-232 setting
[8] Isolation voltage (ch - ch, ch - earth) 300 Vdc , ac rms
[9] $61 / 2$ digits $=22$ bits, $5^{1 / 2}$ digits $=18$ bits, $4^{1} / 2$ digits $=15$ bits
[10] Assumes relative time format (time since start of scan)

## System Specifications

$\left.\left.\begin{array}{ll}\text { Scanning Inputs } & \text { 34901A, 34902A, and 34908A } \\ \text { Analog } \\ \text { multiplexer channels }\end{array}\right\} \begin{array}{ll}\text { 34907A digital in and totalize }\end{array}\right\}$ Scans channels in ascending order

## Scan Triggering

Source

Scan count
Scan interval
Channel delay
External trig delay
External trig jitter

## Alarms

| Analog inputs | Hi, Lo, or Hi + Lo evaluated each scan <br> Digital inputs |
| :--- | :--- |
|  | 34907A digital in maskable pattern match <br> or state change |
| Monitor channel | 34907A totalize: Hi limit only <br> Alarm evaluated each reading |
| Alarm Outputs | 4 TTL compatible |
| Latency | Selectable TTL logic Hi or Lo on fail <br> 5 ms (typical) |


| Memory | Battery backed, 4 year typical life ${ }^{[1]}$ <br> Readings50,000 with timestamp <br> Readable during scan |
| :--- | :--- |
| States | 5 instrument states with user label |
| Alarm Queue | Up to 20 events with channel number, <br> reading, and timestamp |


| System Features | Individual Mx+B scaling and |
| :--- | :--- |
| Per-channel Math | Min/Max/Average calculated real time |
| Power Fail Recovery | Resumes scanning automatically |
| Ceunts each relay closure and stores |  |
| Reaintenance | Con module User resettable <br> Real-time clock |


| General Specifications |  |
| :--- | :--- |
| Power Supply | $100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V} \pm 10 \%$ |
| Power Line Frequency | 45 Hz to 66 Hz automatically sensed |
| Power Consumption | $12 \mathrm{~W}(25 \mathrm{VA}$ peak) |
| Operating Environment | Full accuracy for $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ |
|  | Full accuracy to $80 \%$ R.H. at $40^{\circ} \mathrm{C}$ |
| Storage Environment | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}(11]$ |
| Weight | Net: $3.6 \mathrm{~kg}(8.0 \mathrm{Ibs})$ |
| Safety | Conforms to CSA, UL-1244, IEC 1010 Cat I |
| RFI and ESD | CISPR 11, IEC $801 / 2 / 3 / 4$ |

## Software

Agilent BenchLink Data Logger 3
(not included with Option 001)

| System Requirements ${ }^{[2]}$ |  |
| :---: | :---: |
| Operating System | Windows 98SE, NT ${ }^{\circledR} 4.0$ SP6a, 2000 SP4, XP SP2, Adobe ${ }^{\circledR}$ Acrobat ${ }^{\circledR}$ Reader V5.0 or higher (to view documentation) Microsoft ${ }^{\circledR}$ Internet Explorer V6.0 or higher (required when using Windows NT) |
| Controller | Recommend Pentium ${ }^{\circledR} 4,800 \mathrm{MHz}$ or greater, Min: Pentium III, 500 MHz |
| RAM | Recommend 256 MB or greater, Min 128MB |
| Disk Space | Recommend 200MB, Min 100MB |
| Display | Recommend $800 \times 600$ resolution, 256 colors |
| Computer Interfaces ${ }^{[3]}$ |  |
| GPIB | Agilent and National Instruments PCI-GPIB |
| LAN-to-GPIB | E5810A |
| USB-to-GPIB | 82357A |
|  | RS-232 (Serial Port) PC COM 1-4 |
| Agilent BenchLink Features |  |
| Configuration | Spreadsheet-like channel configurations page. |
|  | Upload and Download instrument configurations. |
|  | Computed channels using $+-{ }^{*} /, \mathrm{dB}, \mathrm{dBm}$, dBV, $x^{2}, \sqrt{x}$ and full, $1 / 2$, or $1 / 4$ bridge strain |
| Graphical Displays | Real-time and historical data displays |
|  | Add, delete, size, and configure real time |
|  | Strip chart with markers and alarm indication, bar and scatter charts, Histogram with statistics, Bar meter, and Data table |
| Graphical Controls | Sliders, switches, buttons, and LED lights |
| Alarm / Limit testing | Start/Stop scanning on alarm condition Control 34903A relay state or 34907A digital output on alarm |
| Data | Real time streamed (saved) to disk |
|  | Automatically export data and configurations |
|  | Copy data or graphics to windows clipboard |
|  | Export your selected data to .CVS, .XML, or .TXT formats |
| Event logging | Automatic entry of alarms and errors |

Instrument Driver Support for Programming Languages

| Universal | Compatible with Windows 95 and NT |
| :--- | :--- |
| Instrument Driver |  |
|  | Agilent VEE 3.2 or greater |
|  | Visual Basic 4.0, |
|  | LabWindows CVI 4.0, |
|  | LabVIEW 7.0 |
| Labview Driver (VI) | LabVIEW 7.0 |

[1] Storage at temperatures above $40^{\circ} \mathrm{C}$ will decrease battery life
[2] Software provided on CD-ROM and includes utility to create floppy disks for installation
[3] Interface and driver must be purchased and installed separately
[4] 90 MHz Pentium, 20 MB RAM
[5] Requires VISA command library for IEEE-488

[^0]
## Modules Specifications

The Agilent-34970A accuracy specifications already include the switching offset and reference junction errors shown below. These errors are listed separately for determining system error with external measurement devices.

Up to three modules, in any combination, can be inserted into a single mainframe. The 34970A's internal DMM connections are accessible only
through the 34901A, 34902A, and 34908A lowfrequency multiplexers.

On-module screw terminals accept wire sizes from 16 -gage to 22 gage. Twenty-gage wire is recommended for high channel count applications. The 34905A and 34906A RF Multiplexers use SMB connectors. A-standard set of (10) BNC-to-SMB adapter cables is provided with each RF module for convenient BNC connections.


## Other

T/C Cold Junction Accuracy ${ }^{[3]}$

[1] Not recommended for connection to ac line without external transient suppression
[2] Channel-to-channel or channel-to-earth
[3] Errors included in DMM measurement accuracy specifications
[4] $50 \Omega$ source, $50 \Omega$ load
[5] Bandwidth direct to card SMB connectors
[6] Isolation within channel 1 to 20 or 21 to 40 banks is -40 dB
[7] Applies to resistive loads only
[8] Thermocouple measurements not recommended with 34908A module due to common lo configuration

## Multiplexer Selection-Guide

Choose between the broad functionality of the 34901 A , the-high speed scanning of the 34902 A , or the single-ended density of the 34908A. These three modules are the only way to connect to the 34970A internal DMM. They can be used to scan with external instruments as well.

All multiplexer modules employ break-beforemake scanning, ensuring only one closed channel (or channel pair) at a time. Multiple channel closures are allowed on the 34901A and 34902A modules when not configured for scanning.

The 34908A does not allow multiple channel closures at any time.

## 34901A

20-Channel General-Purpose Multiplexer

- $60 \mathrm{ch} / \mathrm{s}$ scanning
- Two- and four-wire scanning
- Built-in thermocouple reference junction
- 300 V switching

The Agilent 34901A is the most versatile multiplexer for general purpose scanning. It combines dense, multifunction switching with 60-channel/ second scan rates to address a broad spectrum of data acquisition applications.

Two- and four-wire channels can be-mixed on the same module. Two-additional fused inputs (22-channels total) route up to 1 A -of-current to the internal DMM, allowing ac and dc current measurements without the need for external shunt resistors.

|  | 34901A | 34902A | 34908A |
| :--- | :--- | :--- | :--- |
| Number of Channels | $20+2$ | 16 | 40 |
| Max scan speed | $60 \mathrm{ch} / \mathrm{s}$ | $250 \mathrm{ch} / \mathrm{s}$ | $60 \mathrm{ch} / \mathrm{s}$ |
| Number of contacts | 2 or 4 | 2 or 4 | 1 |


| Temperature |  |  |  |
| :---: | :---: | :---: | :---: |
| Thermocouple | - | - | - |
| 2-wire RTD | - | - | - |
| 4-wire RTD | - | - |  |
| Thermistor | - | - | - |
| dc Volts | - | - | - |
| ac Volts | - | - | - |
| 2-wire Ohms | - | - | - |
| 4-wire Ohms | - | - |  |
| Frequency | - | - | - |
| Period | - | - | - |
| dc current | - |  |  |
| ac current | $\bullet$ |  |  |



## 34902A

16-Channel High-Speed Multiplexer

- $250 \mathrm{ch} / \mathrm{s}$ scanning
- Two- and four-wire scanning
- Built-in thermocouple reference junction

The Agilent 34902A employs reed relays-to achieve scan rates up to 250 channels per second. Use this module for high-throughput automated test applications as well-as high-speed data logging and monitoring tasks.

Sixteen two-wire inputs switch up to $300-\mathrm{V}$. Two- and four-wire channels may be mixed on the same module. User provided shunt resistors are required for current measurements.

## 34908A

40-Channel Single-Ended Multiplexer

- $60 \mathrm{ch} / \mathrm{s}$ scanning
- Single-wire switching for common-low applications
- Built-in thermocouple reference-junction

Use the Agilent 34908A for the greatest density in common-low applications, such as battery test, component characterization, and benchtop testing.

Each module switches 40 one-wire inputs. All two-wire internal measurements except current are supported. The module low connection is isolated from earth and can float up to 300 V .


Note: Not recommended for connection to ac-line without external transient suppression.


Note: Thermocouples must be electrically isolated from each other to avoid current loops and subsequent measurement errors.


## 34903A

20-Channel Actuator/General Purpose Switch

- SPDT (Form C) latching relays
- $300 \mathrm{~V}, 1 \mathrm{~A}$ actuation and control

This general-purpose switch module has 20 independent single-pole, double-throw (SPDT) relays. Use it to cycle power to products under test, control indicator and status lights, and to actuate external power relays and solenoids. Combine it with matrix and multiplexer modules to build custom switch systems. Its $300 \mathrm{~V}, 1 \mathrm{~A}$ contacts can handle up to 50 W , enough for many power line switching applications.

## 34904A

4x8 Two-wire Matrix Switch

- 32 two-wire crosspoints
- $300 \mathrm{~V}, 1 \mathrm{~A}$ switching

The Agilent 34904A gives you the most flexible connection path between your device under test and your test equipment, allowing different instruments to be connected to multiple points on your DUT at the same time.

Rows or columns may be connected between multiple modules to build $8 \times 8,4 \times 16$ or larger matrices, with up to 96 crosspoints in a single frame.


8


34905A $50 \Omega$
34906A 75

## Dual 4-channel RF Multiplexers

- 2 GHz bandwidth
- BNC to SMB adapter cables-included

The Agilent 34905A and 34906A RF multiplexers offer broadband switching capabilities for highfrequency and pulsed signals. Use them to route test signals between your device under test and your signal generator, oscilloscope, spectrum analyzer, or other instrumentation.

The RF multiplexers are arranged as two independent 1 x 4 multiplexers, each with a common shield and a switched center conductor. Connections can be made directly to SMB inputs with $2-\mathrm{GHz}$ usable bandwidth, or to the BNC-to-SMB adapters provided with 1 GHz bandwidth. Multiple banks may be cascaded together for applications requiring even larger topologies-create a stubless 16:1 multiplexer in a single frame.


## $50 \Omega$ MUX Typical AC Performance Graphs

## Insertion Loss



## vSWR



## Crosstalk


$75 \Omega$ MUX Typical AC Performance Graphs

Insertion Loss

_ _ direct to card
__ using provided adapter cables

VSWR


Crosstalk


## Ordering Information

## Mainframe

34970A Data Acquisition/Switch Unit Includes internal $61 / 2$ digit DMM, Operating and Service Manuals, Test Report, power cord, and Quick Start package (includes Agilent Benchlink Data Logger II software, RS-232 cable, thermocouple, and screwdriver). Modules are purchased separately and are required to operate.

## Option 001 Delete Internal DMM

Same as above but deletes DMM and Quick Start package.
Order 34970-80010 to retrofit DMM at a later time.
Option 1CM Rack mount kit
Option A6J ANSI Z540 compliant calibration
Option OBO Delete manual set
Option ABO Taiwan: Chinese manual
Option AB1 Korea: Korean manual
Option AB2 China: Chinese manual
Option ABA English: English manual
Option ABD Germany: German manual
Option ABE Spain: Spanish manual
Option ABF France: French manual
Option ABJ Japan: Japanese manual
Option ABZ Italy: Italian manual

## Modules

34901A 20-Channel armature multiplexer
34902A 16-Channel reed multiplexer
34903A 20-Channel actuator/general purpose switch
34904A $4 \times 8$ Two-wire matrix switch
34905A Dual 4-Channel RF multiplexer, 50 Ohms
34906A Dual 4-Channel RF multiplexer, 75 Ohms
34907A Multifunction module
34908A 40-Channel single-ended multiplexer
Accessories
34307A 10-pack of J-type thermocouples
34308A 5-pack of $10 \mathrm{k} \Omega$ thermistors
34161A Accessory pouch
34131A Hard carrying case (transit case)
E5810A LAN/GPIB gateway
82357A USB/GPIB
34970-80010 DMM field installation kit. Fully calibrated with test report and Quick Start kit
34905-60001 Kit of 10 SMB-to-BNC adapter cables, $50 \Omega$
34906-60001 Kit of 10 SMB-to-BNC adapter cables, $75 \Omega$

## Related Literature

Pub. number
Accessories for the 34970A Data
5966-4443EN
Acquisition/Switch Unit, data sheet
Practical Temperature Measurements,
application note
Agilent 34980A Multifunction
5989-1437EN

## Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

## Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you receive your new Agilent equipment, we can help verify that it works properly, and help with initial product operation.

## Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Get assistance with all your test and measurement needs at: www.agilent.com/find/assist

Agilent's IO Libraries Suite ships with the 34970A to help you quickly establish an error-free connection between your PC and instruments - regardless of the vendor. It provides robust instrument control and works with the software development environment you choose.

For additional description of Agilent's 10 Libraries Suite features and installation requirements, please go to:
www.agilent.com/find/iosuite-datasheet

## Agilent Email Updates

## www.agilent.com/find/emailupdates

Get the latest information on the products and applications you select.
Agilent T\&M Software and Connectivity
Agilent's Test and Measurement software and connectivity products, solutions and developer network allows you to take time out of connecting your instruments to your computer with tools based on PC standards, so you can focus on your tasks, not on your connections.

Visit www.agilent.com/find/connectivity for more information.

Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 1998, 2000, 2004, 2005
Printed in the U.S.A. December 6, 2005
5965-5290EN


[^0]:    Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.
    Adobe and Acrobat are trademarks of Adobe Systems Incorporated.
    Pentium is a U.S. registered trademark of Intel Corporation.

